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ABSTRXT 

The input-output characteristics of an ultrasonic testing system 

used for "stress wave factor" measurements are studied by coupling the 

transmitting and receiving transducers face-to-face, without a specimen 

in between. A summary of some of the fundamentals of digital signal 

processing which are utilized is provided. 

The inputs and outputs are digitized and are processed in a 

microcomputer using digital signal processing techniques. The entire 

ultrasonic test system, including transducers and all electronic 

components, is modeled as a discrete-time linear shift-invariant 

system. A digital bandpass filter is introduced to reduce noise effects 

on the output signal. The output due to a broadband input is deconvolved 

with the input to obtain the unit-sample response and the'frequency 

response of the discrete-time system. Then the impulse response and 

frequency response of the continuous-time ultrasonic test system are 

estimated by interpolating the defining points in the unit-sample 

response and frequency response of the discrete-time system. The 

ultrasonic test system is found to behave as a linear-phase bandpass 

filter. 

The unit-sample response and the frequency response of the 

discrete-time model of the test system are used to compute the output 

of the test system to a variety of inputs. Excellent agreement 

between predicted and measured outputs is obtained for rectangular 

pulse inputs of various amplitudes and durations and for tone burst 

inputs whose center frequencies are within the passband of the test 

system. Excellent agreement between predicted and measured outputs 

is also obtained for single cycle inputs of various amplitudes and 

whose center frequencies are within the passband of the test system. 

The input-output limits on the linearity of the system are determined. 



INTRODUCTION 

Conventional ultrasonic testing (UT) is conducted either in the 

through-thickness transmission or pulse-echo modes [l]. In the 

through-thickenss transmission mode, the transmitting and receiving 

transducers are coupled to opposite faces of the structure under 

inspection and the transmitted wave field is analyzed. In the pulse- 

echo mode, the transmitting and receiving transducers, which may 

be combined into a single transducer, are coupled to the same face 

of the structure under inspection and the reflected wave field is 

analyzed. 

Recently Vary et al. [2,3] introduced an ultrasonic nondestructive 

evaluation (NDE) parameter called the "stress wave factor" (SWF). 

Similar to the pulse-echo test mode, separate transmitting and 

receiving transducers are coupled to the same face of the structure. 

However, unlike conventional pulse-echo testing which is generally 

limited to the analysis of nonoverlapping reflected wave echoes, 

the SWF is also valid for the analysis of overlapping echoes. 

Specifically, an input pulse having a broadband frequency spectrum 

is applied to the transmitting transducer and the number of 

oscillations of the output signal at the receiving transducer exceeding 

a preselected voltage threshold is defined as the SWF. The SWF has 

been correlated with mechanical properties of carbon fiber reinforced 

composites [2-41. Williams et al. [5] theoretically and experimentally 

studied the ultrasonic input-output characteristics of the SWF test 

configuration in a thick isotropic elastic plate. The extension of 

that work to thin plates is currently in progress [6]. 

An important step toward the quantitative analysis of input- 

output relations in any ultrasonic NDE procedure is the quantitative 

characterization of the experimental test system without a test 

specimen. The effects on the output signal due to the ultrasonic 

transducers, the coupling of the transducers to the test specimen, 

and electronic components such as filters, amplifiers, attenuators 
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and cables in the experimental system must be characterized before the 

effects on the output signal due to the test specimen can be isolated. 

This study is part of an overall effort to develop quantitative 

analyses of the SWF and to develop computer-aided nondestructive 

evaluation (CANDE)* capabilities. The experimental UT system is 

characterized by directly coupling the transmitting and receiving 

transducers face to face without a test specimen. Input and output 

signals are digitized using a digital oscilloscope and are processed 

in a microcomputer using digital signal processing techniques. The 

system transfer function of the experimental UT system without any 

test specimen is obtained. 

The results of this study should provide a useful example in the 

characterization of any UT system which utilizes separate trans- 

mitting and receiving transducers. Furthermore, developments in 

CANDE should be facilitated by the digital signal processing procedures 

which are summarized. 

* Pronounced the same as "candy". 



em-NDAMENTALS OF DIGITAL SIGNAL PROCESSING ~--- 

A few results in digital signal processing are summarized in 

this section. Extensive discussions of digital signal processing 

techniques exist elsewhere in the literature [7-lo]. Primarily, 

the notations in [7] are followed in this outline. 

Digital signal processing is concerned with the representation 

of signals by sequences of numbers and the processing of those 

sequences. Sequences correspond to discrete-time signals derived 

from sampling continuous-time signals. The notation x(n) denotes 

a sequence of numbers whose entries depend on the independent 

parameter n. The sequence x(n) is defined only for integer values 

of n and represents successive samples of a continuous-time 

signal. For example, the sequence x(n) is derived from periodic 

sampling of the continuous-time analog signal x,(t), where t is time, 

according to 

x(n) = xa(nT) (1) 

where T is called the sampling period. The reciprocal of T is called 

the sampling rate or the sampling frequency. The availability of 

high speed digital computers and efficient signal processing algorithms 

have accelerated the implementation of digital signal processing 

techniques compared with continuous-time analog signal processing 

techniques. With the proper analysis, results from the digital 

signal processing of a sequence derived from sampling a continuous- 

time signal can accurately approximate results from continuous- 

time signal analyses. 

A discrete-time system is defined mathematically as a unique 

transformation that maps an input sequence x(n) into an output sequence 
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y(n). Discrete-time linear shift-invariant systems are discrete-time 

analogs of continuous-time linear time-invariant systems. Table 1 

is a summary of input-output properties of discrete-time linear, 

shift-invariant and linear shift-invariant systems and their 

corresponding analogs in continuous-time systems. Discrete-time 

systems can be further characterized as stable and causal. A stable 

system is one for which every bounded input x(n) produces a bounded 

output y(n). A causal system is one for which the output y(n) for 

n equal to no depends only on the input x(n) for n less than or 

equal to n . 
0 

All subsequent discussions here are limited to 

discrete-time linear shift-invariant systems that are stable and 

causal. 

As shown in Table 1, the response of a linear shift-invariant 

system can be characterized by the unit-sample response h(n) via the 

convolution sum given in eqn. (l-1) in Table 1. As a consequence, 

it can also be shown that the steady-state response of a linear 

shift-invariant system to a sinusoidal input is sinusoidal of the 

same frequency as the input but with a magnitude and phase determined 

by the system. It is this property of linear shift-invariant 

systems that makes representations of signals in terms of sinusoids 

or complex exponentials (that is, Fourier representations) so useful 

in linear system theory. Also, it should be mentioned that the 

process of obtaining y(n) from known x(n) and h(n) is called 

convolution, and the process of obtaining h(n) from known x(n) and 

y(n) is called deconvolution. 

Table 2 is a summary of Fourier representations of continuovs- 

time signals and of sequences. Fourier representations appear as 

equation pairs whose constituents are often referred to as the 

synthesis and analysis equations as indicated in Table 2. Xa(jQ) 

in eqn. (2-lb) in Table 2 is a continuous function in radian frequency 

n and is the Fourier transform of the continuous-time signal xa(t)s 
where the symbol j is defined as the square root of minus one. 

If x,(t) has units of voltage, Xa(jQ> has units of voltage per 

radian frequency (or simply volt-set). Xa(jQ) is in general complex 

and can be specified by its magnitude and phase. 
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If x,(t) is a real-valued function of time, the magnitude and phase 

of Xa(jQ) will be even and odd functions of frequency, respectively. 

Thus, it is only necessary to present the magnitude and phase of X,(jn) 

for positive frequencies. If X,(t) is real and an even function of time, 

the phase of Xa(jn> is zero. If x,(t) is real and an odd function 

of time, the phase of Xa(jC?> is t ~r/2. If x,(t) is shifted (that 

is, advanced or delayed) in time, the magnitude of Xa(jQ) is not 

affected but a phase linearly proportional to frequency (that is, 

linear phase) is introduced in the phase of Xa(jQ). More 

specifically, the phase (in radians) is proportional to the radian 

frequency with a proportionality constant having units of time. 

The negative of the value of the proportionality constant is the 

time delay [9]. 

The remainder of Table 2 deals with the Fourier representations 

of sequences. If properly computed, the Fourier transform X,(jQ) 

can be approximated by the Fourier representation of a sequence 

derived from sampling x,(t). Formulae for the Fourier representations 

of sequences are given in the remainder of Table 2. Examples 

of the Fourier representations of continuous-time signals and 

sequences are illustrated in Fig. 1 and will be discussed shortly. 

X(ejw) in eqn . (2-2b) in Table 2 is a continuous function of 

radian frequency w and is the (discrete-time) Fourier transform of 

a sequence x(n). The frequency w is in units of radians per 

increment of n, which is simply radians. If x(n) has units of 

voltage, X(eJW) has units of voltage per radian. The Fourier 

transform of a sequence is useful for the analysis of general 

sequences. The discrete Fourier series representations of a 

periodic sequence i(n) of period N are also shown in Table 2. 



A periodic sequeuce j;(n) of period N is one such that g(n) equals 

tci i(n + Y). -z(k) in eqn. (2-3b) in Table 2 is a periodic 

sequence of period N and the numbers in this sequence are the 

discrete Fourier series coefficients of the periodic sequence 

G(n) having period N. If G(n) has units of voltage, g(k) has 

units of voltage also. The discrete Fourier series of a periodic 

sequence serves as a prelude to the discrete Fourier transform 

(DFT). X(k) in eqn. (2-4b) in Table 2 is a sequence of length 

N and is called the DFT of a finite-length sequence x(n) of 

length N [7]. If x(n) has units of voltage, X(k) has units of 

voltage also. The DFT is useful for digital signal processing 

because sequences processed by a computer are of finite length and 

also because of the existence of efficient DFT computational 

algorithms. 

By comparing the entries in Table 2 for the discrete Fourier 

series of a periodic sequence of period N and the DFT of a finite- 

length sequence of length N, it is observed that the DFT representation 

is obtained from the discrete Fourier series representation by 

interpreting the finite-length sequence as one period of a periodic 

sequence. The properties of the DFT are similar to those of 

the Fourier transform, except that because of the implied 

periodicity, shifts of x(n) in n by one period N and an integer 

multiple of one period are indistinguishable and a shift in n of 

larger than N is the same as a shorter shift. 

The DFT is computed via a fast Fourier transform (FFT) 

algorithm. To evaluate x(n) from X(k), the inverse DFT is used 

and is computed via an inverse FFT (IFFT) algorithm. The FFT 

computation is particularly efficient when the length of the 

sequence is an integer power of 2. A sequence of length N is called 

an N-point sequence. The DFT of an N-point sequence is called an 

N-point DFT and is computed via an N-point FFT algorithm. In 

Fig. 1, it will be illustrated that the Fourier transform of a 

continuous-time signal can be reconstructed approximately from 

the DFT of a sequence derived from sampling the continuous-time 

signal. Again, it should be noted that where DFT relations are 

concerned, a finite-length sequence is represented as one period 

of a periodic sequence. 
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Fig. 1 shows Fourier representations of continuous-time signals 

and of sequences derived from sampling the continuous-time signals. 

In part (i) in Fig. la, the continuous-time signal x,(t) is assumed 

to be bandlimited in frequency with Fourier representation X,(jQ,) 

as shown. The highest frequency of x,(t) is assumed to be Ro/2. 

In part (ii) in Fig. la, a sequence x(n) results from the periodic 

sampling of x,(t) with a sampling period of T. The Fourier transform 

of the sequence x(n) into a continuous function X(eJW) is also 

shown. It is observed that X(eJW> can be obtained from Xa(jL?) by the 

superposition of an infinite number of Xa(jQ) shifted in frequency 

w by integer multiples of HIT. It is also observed that the magnitude 

and frequency of X(e jw) are scaled from those of X,(jfi) by l/T 

and T, respectively. The Fourier transform Xa(jQ) can be recovered 

exactly, except for the scaling factors, from the Fourier transform 

X(eJW) of the sequence x(n) in the interval of -Tr < w _ 2 IT by 

lowpass filtering X(eJW) using a cutoff frequency of Tr, on one 

condition. The condition is the ROT/2 < 7~ so that there will be no 

overlapping of superposed Xa(jn) in forming X(eJW). This condition 

is known as the "sampling theorem" and assures that if a continuous- 

time signal x,(t) is sampled at a frequency greater than twice the 

highest frequency of Xa(jO), then X(eJW> is identical to X,(jQ) in 

the interval - IT < w < TT, except for scaling factors. Because I - 
Xa(jQ) is recovered, the continuous-time signal x,(t) can be recovered 

from the sequence x(n). This minimum required sampling frequency 

is called the Nyquist rate or the Nyquist frequency [7, 9, lo]. The 

distortion due to overlapping of superposed Xa(jn> when the sampling 

theorem is violated is called aliasing. In part (ii) in Fig. la, the 

case where there is no overlapping of superposed Xa(jn) is 

illustrated; thus the signal is not aliased. 

Whereas Fig. la deals with general continuous-time signals, 

Fig. lb deals with finite-duration continuous-time signals. In 

part (i) in Fig. lb, a continuous-time signal x,(t) with nonzero 

values over a finite time duration and its Fourier representation 



Xa(jQ) are shown. The duration where the signal is nonzero is 

assumed to be to and sampling the continuous-time signal with a 

sampling period T is assumed to result in a sequence of length N. 

It is observed that Xa(jQ) for a finite-duration signal 
is not bandlimited in frequency. In part (ii) in Fig. lb, 

a sequence x(n) results from the periodic sampling of X,(t) with a 

sampling period of T. All numbers in the sequence x(n) are zero 

for n < 0 and for n > N-l. Thus x(n) is a finite-length sequence of 
length N. The Fourier transform of the sequence x(n) into the 

continuous function X(e jw ) is also shown. Similar to results in Fig. la, 

it is observed that X(eJW) can be obtained from Xa(jfi) by the super- 

position of an infinite number of Xa(jn) shifted in frequency w by 

integer multiples of 2lT. However for this case, because x (jR) is not 

bandlimited in frequency, .there is overlapping of superposzd Xa(jQ) 

in forming X(e jw) . Thus there is aliasing and X,(jQ) can not be 

recovered exactly from X(eJW) in the interval of -Tr < w < Tr. However, I _ 

if the sampling frequency is greater than twice of most of the 

significant frequency components in Xa(jn), Xa(jn) can still be 

approximated r:dequately by X(ejw). The DFT X(k) of the finite-length . 
sequence x(n) is often computed instead of X(eJw>. However, in DFT 

evaluations, a finite-length sequence is represented as one period of 

a periodic sequence. 

In part (iii) in Fig. lb, a periodic sequence x(n) of period N 

constructed using the N-point sequence x(n) as a period is shown. 

The discrete Fourier series representation z(k) of the periodic 

sequence g(n) is also shown. z(k) is a periodic sequence of period N. 

The DFT X(k) of the finite-length sequence x(n) can be interpreted as 

a period of g(k) for 0 ( k 2 N - 1 as shown. It is observed that X(eJW> can 

be obtained from x(k) by interpolating points in z(k). Because Xa(jfi) 

can be approximated adequately by X(e jw) if the sampling frequency 

is greater than twice of most of the significant frequency components 
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in Xa(jfi), interpolations of z(k) or X(k) can be used to estimate 

XaW>. It is also observed that the numbers in X(k) are scaled 

approximately from the values of Xa(jQ) by a factor of l/T and 

the spacing between successive numbers in the sequence X(k) can 

be interpreted as HIT/ in radian frequency which is the 

frequency domain resolution. Again, it is noted that the reconstruction 

of the Fourier transform of a finite-duration continuous-time 

signal from the DFT of a finite-length sequence by interpolation 

is generally an approximation due to aliasing. 

Table 3 is a list of conditions for the special case where 

there is exact correspondence (to within a scaling factor) of the 

Fourier transform of a continuous-time signal and the DFT of a 

finite-length sequence derived from sampling [lo]. Also, the N-point 

sequence x(n) can be considered as an M-point sequence if M is 

greater than N with the last M-N numbers in the M-point sequence 

being zero. As discussed here next regarding convolution 

procedures, sometimes it is convenient to extend the length of a 

sequence by appending zeroes. 

Because the response of a linear shift-invariant system can 

be evaluated via the convolution sum in eqn. (l-1) in Table 1, 

convolution representations will be discussed. Table 4 is a summary 

of convolution representations of continuous-time signals and of 

sequences. The Fourier representations of the convolutions are 

also given in Table 4. Eqn. (4-la) in Table 4 gives the linear 

convolution of continuous-time signals x al(t) and xa2(t> resulting 

in xa3(t). The Fourier representation of the convolution is given 

in eqn. (4-lb) in Table 4. It is noted that convolution in the 

time domain results in multiplication in the frequency domain. 

Conversely, because of the duality between time and frequency 

domains in Fourier representations, it can be shown that convolution 

in the frequency domain results in multiplication in the time 

domain, such as time windowing [9]. The concepts of periodic and 

circular convolutions will be introduced as preludes to the 

efficient evaluation of linear convolution of sequences using 

DFT procedures. 
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Eqn. (4-2a) in Table 4 gives the periodic convolution of two 

periodic sequences %1(n) and z2(n), each of period N, resulting in 

a periodic sequence Z3(n) of period N. By restricting attention 

to one period of the periodic convolution, circular convolution of 

two N-point sequences xl(n) and x,(n) to obtain an N-point sequence 

x 
3 

(n) can be defined from the periodic convolution and is given 

in eqn. (4-3a) in Table 4. The two periodic sequences %1(n) and 

G2 (n> , each of period N, are constructed using the N-point sequences 

xl(n) and x,(n) as periods, respectively. Eqns. (2-3b) and (2-4b) 

in Table 2 have been used to obtain the simplified eqn. (4-3b) in 

Table 4. This is because Z,(n) and g,(n) are equal to xl(n) and 

x,(n) for n ranging from zero to N-l, thus 21(k) and g2(k) for 

0 5 k L, N-l become Xl(k) and X2(k), resynctively. The circular 

convolution of N-point sequences is called an N-point circular 

convolution. The designation "circular" is derived from a graphical 

rspresentation of how an N-point sequence can be used to construct 

a periodic sequence of period N [7]. It can be imagined that the 

N points from the N-point sequence are equally spaced in angle around 

a circle with a circumference of exactly N points. The periodic 

sequence of period N is obtained by travelling around the 

circumference of the circle a number at a time recording the N-point 

sequence repeatedly. Also, a rotation of the circle corresponds 

to circular shifting of the N-point sequence [7]. 

The linear convolution of an Nl-point sequence xl(n) and an 

N2-point sequence x,(n) is defined as 

N1-1 

x,(n) = C 
m=O 

xl(m) x2("-m) 

Because the resulting sequence x,(n) is of length Nl+N2-1 [7], the 

evaluation of linear convolution via circular convolution requires 

all sequences to be of the same length which has to be Nl+N2-1. 
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Eqn. (4-4a) in Table 4 gives the linear convolution of finite-length 

sequences xl(n) and x,(n) to obtain a finite-length sequence x,(n) 

evaluated via circular convolution. The computation of circular 

convolution using DFT instead of the direct evaluation of linear 

convolution is preferred due to computational efficiencies. The 

(Nl+N2-l)-point DFTs of the two convolving sequences are computed 

via a FFT algorithm and then multiplied according to eqn. (4-4b) in 

Table 4. The (Nl+N2-l)-point inverse DFT of the product is computed 

via an IFFT algorithm and the result is the desired linear convolution. 

Because the original sequences xl(n) and x,(n) are of lengths Nl and 

N2' respectively, N2-1 and Nl-1 zeroes are appended to xl(n) and x,(n), 

respectively, to yield two (Nl+N2-l)-point sequences for the (Nli-N2-l)- 

point circular convolution. Alternatively, it can be stated that if 

linear convolution of two (N~+N~ -l)-point sequences is conducted via an 

(N +N -l)-point 12 circular convolution, the last N 2-1 numbers in one 

sequence to be convolved must be zeroes and the last N l-1 numbers in 

the other sequence to be convolved must be zeroes. In practice, 

the sequences are extended to a length greater than Nl+N2-1 to a 

length that is an integer power of 2 for efficient FFT computation. 

Fig. 2 shows convolution representation of continuous-time signals 

and their sequences derived by sampling. In Fig. 2a, continuous-time 

signals xal(t) of duration Cl and xa2(t) of duration t.2 are convolved 

to form the continuous-time signal x a3(t) of duration tl + t2. 

In part (i) in Fig. 2b, the continuous-time signal xal(t) is sampled 

with a sampling period T and is assumed to produce an Nl-point 

sequence. Then N2-1 zeroes are appended to form an (Nl+N2-l)-point 

sequence xl(n). Then a periodic sequence xl(n) of period 

Nl+N2-1 is constructed using xl(n) as a period. Similarly in 

part (ii) in Fig. 2b, the periodic sequence i,(n) of period 

Nl+N2-1 is obtained from xa2 (t) which is assumed to produce an N 2-paint 

sequence when sampled with a sampling period T. Periodic convolution of 

ii,(n) and G2(n) results in the periodic sequence G,(n). Then x,(n) 

can be identified from the circular convolution portion of G,(n) 

by restricting attention to one period of the periodic sequence. It 
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is observed that xa3(t) can be approximated from the interpolation of 

the (Nl+N2-l)-point sequence x,(n). It is observed that the numbers 

in x3(n) are scaled approximately from the value of xa3(t) by a factor 

of l/T and the spacing between successive numbers in the sequence 

x,(n) can be interpreted as T. Because the circular convolution is 

obtained via a DFT, restrictions on the DFT apply to the convolution 

also. Thus the sampling theorem applies to sampling the continuous-time 

signals if x a3(t) is to be approximated adequately by the sequence 

x,(n). 

In practice, if a.continuous-time signal is to be sampled, the 

sampling frequency and the sampling length must be specified. Table 

5 is a summary of the significance of the sampling parameters. Eqn. 

(5-l) in Table 5 is written based on the earlier discussion in relation 

to Fig. la. 
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EXPERIMENTAL SYSTEM 

A schematic of the experimental system including the 

specimen is shown in Fig. 3. This is a typical stress wave factor 

test configuration. The goal of this study was to characterize 

the experimental test system without the test specimen. Thus, 

all testing in this study was conducted with the transmitting and 

receiving transducers directly coupled face-to-face without any 

test specimen in between. 

The system consisted of a pulse/function generator (Wavetek 

model 191); a 5 MHz (corresponding to -3 dB point) lowpass filter 

(Allen Avionics model F2516); broadband (0.1 to 3.0 MHz) transmitting 

and receiving transducers (Panametrics model VlO5) having an 

approximately flat sensitivity of -85 dB relative to 1 V/pBar; 

an ultrasonic interface couplant (Acoustic Emission Technology 

SC-6); an ultrasonic preamplifier (custom-built by Panametrics) 

having a gain of 40 dB in the frequency bandwidth from 1 kHz 

to 10 MHz; a variable frequency filter (A.P. Circuit Corporation 

model AP 220-5) which could be used as a lowpass, highpass, bandpass, 

or bandstop filter in the frequency range from 10 Hz to 2.5 MHz; a 

digital oscilloscope (Nicolet model 2090 with plug-in model 204-A) 

which could sample and store analog signals at sampling frequencies 

ranging from 0.05 Hz to 20 MHz (corresponding to sampling 

periods ranging from 20 set to 50 nsec) up to 4096 points; and 

an IBM personal computer (IBM PC) which was interfaced with 

the digital oscilloscope. 

The variable frequency filter was used as a 0.4 MHz to 2.6 

MHz (corresponding to -3 dB points) bandpass filter, selected on 

the basis of the receiving transducer frequency response. 

All signals were sampled at a sampling frequency of 20 MHz 

(that is, one sample every 50 nsec) using 256 points. Thus 

each recorded signal was 12.8 psec in duration. The 5 MHz 

lowpass filter was selected via antialiasing considerations. 
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Table 6 is a BASIC language program listing for the FFT and IFFT 

computations used in this study. All DFT and inverse DFT evaluations 

in this study were conducted using the FFT and IFFT program in 

Table 6. 
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DIGITAL CHARACTERIZATION OF EXPERIMENTAL SYSTEM 

The objective of this study was to obtain the system transfer 

characteristics between the input to the transmitting transducer 

and the output from the receiving transducer after signal conditioning. 

A schematic of the experimental system is shown in Fig. 3. Once 

again, note that the experiment was conducted with the transmitting 

and receiving transducers coupled face-to-face without a test 

specimen. Thus, the "system" under study consisted of the 

transmitting transducer, the coupling between transmitting and 

receiving transducers, the receiving transducer, the ultrasonic 

preamplifier, the variable frequency filter and all necessary 

cables. 

A continuous-time system can be described by its impulse 

response h,(t) and its frequency response H,(jn). In this study, 

h,(t) and H,(jQ) of the test system were computed from the unit- 

sample response h(n) and the DFT of h(n) denoted H(k), respectively, 

of a discrete-time model of the continuous-time system. 

The experimental system was assumed to be a discrete-time linear 

shift-invariant system. As shown in Fig. 3, channel 1 of the 

digital oscilloscope sampled the continuous-time input signal to 

the transmitting transducer. The resulting discrete-time signal 

will be called the input sequence and will be denoted by x(n). 

Similarly, channel 2 of the digital oscilloscope sampled the 

continuous-time output signal from the receiving transducer after 

preamplification and bandpass filtering. The resulting discrete- 

time signal will be called the output sequence and will be denoted 

by y(n). Thus, the objective of this study was to obtain the 

discrete-time system transfer characteristics between x(n) and 

y(n). The discrete-time system besides being linear shift-invariant 

was observed to be stable and causal. A schematic of the digital 

signal processing procedures applied to obtain the unit-sample 

response and the frequency response of the discrete-time system 

is shown in Fig. 4. 
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The pulse/function generator produced an approximately rectangular 

pulse 20 nsec in duration. The rectangular pulse was passed through 

the 5 MHZ lowpass filter before it reached the digital oscilloscope. 

Fig. 5 shows the time histories of the input and output signals by 

linearly interpolating the defining points in the input and output 

sequences x(n) and y(n). As shown in Fig. 5, the durations for 

the input and output signals were approximately 3 psec and 4 psec, 

respectively. Thus for the sampling period of 50 nsec, only 

approximately the first 60 and 80 numbers in the sequences x(n) and 

y(n), respectively, were nonzero. Actually, the sequences x(n) 

and y(n) were of length 256 after sampling; that is, the digital 

oscilloscope recorded 256 points each for the input and output signals. 

Then 768 zeroes were appended to the sequences to produce x(n) and 

y(n) of length 1024. The reason for using extended sequences was 

to facilitate evaluation of linear convolution via the DFT as 

discussed later. The DFTs X(k) and Y(k) for x(n) and y(n), 

respectively, were evaluated using a 1024-point FFT algorithm based 

on 1024-point x(n) and y(n). Because the input and output signals 

were of finite duration, they were not bandlimited in frequency. 

However, because the sampling frequency (20 MHz) was greater than 

most of the significant frequency components in the input signal 

(significant up to 5 MHz) and the output signal (significant up to 

2.6 MHz), the sampling theorem assured an adequate approximation 

of the Fourier transform of the input and output signals by the 

DFT of the input and output sequences. Approximations of the 

magnitude and phase of the Fourier transform of the input and 

output signals are shown in Fig. 5. The magnitude and phase of 

the Fourier transform were obtained by linearly interpolating the 

defining points in the magnitude and phase of the DFT of the 

input and output sequences. The magnitude shown in Fig, 5 is 

presented on a dB scale, normalized with respect to the magnitude 

of the largest component in the Fourier transform. The magnitudes 

of the largest components in the Fourier transforms of the input 
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and output are 2.3 x 10 
-7 volt-set and 9.3 x 10 

-7 volt-set 

corresponding to frequencies of 0.4 MHz and 1.4 MHz, respectively. 

From Fig. 5, it is observed that when the magnitude was small, both 

the magnitude and the phase were erratic because of sensitivity to 

noise contamination. 

Letting the 1024-point DFT of the unit-sample respone h(n) of 

the discrete-time system be defined as H(k), eqn. (4-4b) in 

Table 4 can then be used to relate the DFT of the input X(k) and 

the DFT of the output Y(k) as 

Y(k) = H(k) X(k) 

where 0 < k < 1023 for this case. Then H(k) for the system can - - 
be evaluated by rearranging eqn. (3) as 

H(k) = Y&)/X(k) 

(3) 

The inverse DFT of H(k) is the desired unit-sample response h(n). 

The procedure for obtaining h(n) from known x(n) and Y(n) is 

called deconvolution. 

However, results from attempts to perform the direct division 

in eqn. (4),using X(k) and Y(k) as shown in Fig. 5,were un- 

satisfactory because of noise. Thus, the output y(n) was filtered 

digitally before division. The digital filter was selected by 

trial and error. Various digital filters were applied and the 

resulting H(k) and the unit-sample response h(n) were used to 

evaluate output properties for various inputs and compared with 

experimental results. The digital filter selected was a bandpass 

filter utilizing time windowing via a 701-point Blackman window [7]. 

Specifically, the digital filter was obtained via the following 

steps: (1) obtain the unit-sample response hd(n) of a desired ideal 

bandpass filter of 0.2 MHz to 4.5 MHz, (2) shift hd(n) by 350 

points to obtain the unit-sample response h3(n), and (3) multiply 

h3(n) by a 701-point Blackman window w,(n) to obtain a 701-point 

unit-sample response h4(n) of the filter. These steps are 
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illustrated in Fig. 4 also. The resulting digital filter was a 

causal linear-phase bandpass filter. Step 1 identified the desired 

bandpass filter. Because an ideal filter is noncausal as indicated 

by its hd(n) which is nonzero for n less than zero, step 2 shifted 

hd(n) by delaying it by 350 points. A causal filter is especially 

important for real-time signal processing. 

Because the desired digital filter was a finite impulse response 

(FIR) filter which by definition should have a unit-sample response 

of finite duration [7], h3(n) was truncated and only numbers between 

n of zero and 701, inclusively, were retained. To minimize the 

effects of truncation, h3(n) was multiplied by a 701-point Blackman 

window w,(n) in step 3 to form h4(n). The length of 701 points 

was found effective in minimizing the effects of truncation and yet 

allowed a 1024-point DFT evaluation. The reason for the length of 

the sequence h 
4 

(n) of the filter affecting the DFT evaluation was 

that filtering in the frequency domain (that is, multiplying the 

responses of the filter and the signal in the frequency domain) 

corresponded to convolution in the time domain. Because only 

the first 80 numbers in the sequence y(n) were nonzero, proper evaluation 

of the linear convolution of the sequence y(n) with the sequence 

h4(n) which was nonzero for the first 701 numbers required at leil-t 

a 780-point DFT according to discussions associated with eqn. (4-4) 

in Table 4. By increasing the number of points to the nearest integer 

power of 2, which for this case was 1024, 1024-point sequences and 

1024-DFTs resulted. Thus, sufficient zeroes were appended to any 

sequence to extend its length to 1024 points, unless otherwise 

indicated. Also, 1024-point DFTs evaluated via a 1024-point FFT 

were used, unless otherwise indicated. 

H2(k) denotes the 1024-point DFT of the unit-sample response of 

the digital bandpass filter designed by time windowing the unit- 

sample response of an ideal bandpass filter with a Blackman window. 

Using eqn. (4-4b) in Table 4, the DFT of the output after digital 

filtering was H2(k) Y(k). Then eqn. (4) could be modified as 
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Hl W = H2(k) Y(k) ! X(k) (5) 

where Hi(k) was an approximation to H(k), and 0 5 k 2 1023. 

The unit-sample response hi(n) was obtained from Hi(k) by 

performing an inverse DFT via an IFFT algorithm. Because hi(n) 

corresponsded to h,(t) which is a real function of time, h 1 (n) was 

a sequence of real numbers and corresponded to the real part of the 

IFFT. Because a shift of 350 points (corresponding to 17.5 usec) 

was introduced in the design of the causal digital bandpass 

filter, the unit-sample response hi(n) had to be shifted back by 

350 points to remove the artifact introduced by the digital filter. 

This was done after the rectangular windowing procedure discussed in 

the next paragraph. 

It was observed that the individual values in the sequence 

hi(n) for n < 355 and n > 450 were small, less than l/100-th of the - - 
maximum value in the sequence. These small values were due to 

noise contamination introduced during signal recording and also by the 

digital filtering. So, the sequence hi(n) was time windowed by a 

rectangular window w,(n) defined by 

1 , for 355 < n < 450 

w,(n) = (6) 
0 , otherwise 

Thus, the numbers in hi(n) were not affected for 355 < n < 450, 

but all others had been set to zero. The resulting sequence obtained 

by multiplying hi(n) and w,(n) is denoted as h2(n). It is observed 

that this time windowing significantly smoothed the phase of Hi(k) 

in the high frequency region. 
After the rectangular windowing, the sequence h2(n) was shifted 
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back 350 points to remove the shift (that is, time delay) introduced 

by the bandpass digital filter discussed earlier. The 1024-point 

sequence h 2 (n) was shifted to obtain h(n) according to circular 

shifting which in this case becomes 

h2(n + 350) , for 0 5 n 5 1023-350 

h(n) = h2(n - 1024 + 350), for 1024-350 (n 5 1023 (7) 

0 9 otherwise 

The sequence h(n) was the unit-sample response of the test system. 

It is noted that the numbers in h(n) were zero for n 2 100 due to the 

windowing described in eqn. (6). Circular shifting instead of 

linear shifting was used because h2(n) was the result of a few 

DFT evaluations and when a DFT evaluation was performed, a finite- 

length sequence was implied as a period of a periodic sequence. Thus, 

circular shifting procedures corresponding to shifting a periodic 

sequence were required. 

The DFT of the unit-sample response h(n) was H(k). Because 

h(n) was nonzero only for < 100, the first 512 points of h(n) were 

used to compute H(k) via a 512-point FFT. Thus, H(k) as obtained 

was a 512-point sequence. H(k) was the frequency response of the 

discrete-time model of the test system. 

Fig. 6a shows the impulse response h,(t) of the test system 

as obtained by linearly interpolating the defining points in the unit- 

sample response h(n). An impulse response has units of response 

per unit of excitation multiplied by time [ll]. Thus h,(t) in 

Fig. 6a is shown with units of volts per volt-second. It is 

observed that the duration of the unit-sample response was 

approximately 3 usec. Fig. 6b shows the magnitude and phase of the 

frequency response H,(jS?) of the test system as estimated by linearly 

interpolating the defining points in the frequency response H(k). 

A frequency response magnitude has units of response per unit of 

excitation [ll]. Thus, the magnitude of H,(jR) has units of volts 
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per volt. The magnitude of H,(jn> is shown in Fig. 6b on a dB scale, 

normalized with respect to the magnitude of the largest component in 

Ha(jQ> which is 2.7 x 10 -7 volt/volt corresponding to a frequency 

of 1.7 MHz. It was observed that the normalized magnitude had a 

maximum value at 1.7 MHz and the values of the normalized magnitude 

decreased by 6 dB compared to the maximum value at 0.6 MHz and 

2.3 MHz. It was also observed that the phase of H,(jQ> was linear 

from 0.3 MHZ to 2.7 MHZ. The linear phase behavior indicates that 

inputs of frequencies from 0.3 HMz to 2.7 MHz will result in outputs 

delayed in time without distortion. (However, distortion occurs 

because the magnitude of H,(jn> is not constant from 0.3 HMz to 

2.7 MHz.) The introduced time delay corresponding to the linear phase 

can be computed to be 0.49 vs. As shown by the magnitude plot, the 

system was insensitive to frequencies below 0.6 MHz and above 2.3 MHz; 

the information in these frequencies was easily contaminated by noise 

and also displayed the effects of digital filtering. Thus, to 

summarize, the system was found to behave as a linear-phase bandpass 

filter in the frequency range of 0.6 MHz to 2.3 MHz. 
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RESULTS AND DISCUSSIONS 

The outputs of the test system due to different inputs can be 

predicted using the unit-sample response h(n) and frequency response 

H(k) of the discrete-time model of the test system. If the input is 

x(n) and the output is y(n), the input-output relationship is given 

by the convolution in eqn. (l-l) in Table 1. For finite-length 

sequences, eqn. (l-1) in Table 1 can be written in a similar form 

as eqn. (2). The convolution is conveniently evaluated via the 

DFT. If the DFT of the input is ti(k), then the DFT of the output 

Y(k) can be evaluated using eqn. (3). So, the output y(n) due to the 

input x(n) is the inverse DFT of Y(k). The frequency response H(k) 

is shown in Fig. 6. Figs. 7-10 show the outputs of the system to various 

inputs. The time histories of the predicted outputs were obtained 

by linearly interpolating the defining points in the sequence y(n) as 

obtained via the DFT procedure using 512-point DFTs. 

Figs. 7 and 8 show the outputs of the system to tone burst 

inputs of approximately 6 psec in duration and 1.5 MHz and 2.5 MHz 

in center frequency, respectively. It is observed that there was 

excellent agreement between the experimentally measured and the pre- 

dicted outputs. The arrival times of peaks of individual cycles 

were predicted to within ? 25 nsecin both cases. The measured peak 

amplitudes of all the individual cycles were correctly predicted 

to within maximum errors of 5 percent and 9 percent for the 1.5 MHz 

and 2.5 MHz inputs, respectively. Similar agreement was also 

obtained for center frequencies ranging from 0.5 MHz to 3 MHz. 

Fig. 9 shows the output of the system to a 7.5 Psec duration 

rectangular pulse input. There was excellent agreement between the 

experimentally measured and the predicted outputs. The arrival 

times of peaks of individual cycles were predicted to within k 25 nsec. 

The measured peak amplitudes of the individual cycles were correctly 

predicted to within a maximum error of 5 percent. From Fig. 9, for 

the approximate time of 5 to 7 Psec, both the measured and the 
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predicted output were constant in time. The constant values corresponded 

to 0 and 0.046 volts for the measured and predicted outputs, 

respectively. Similar agreement was also obtained for pulse durations 

ranging down to 0.85 usec. 

Fig. 10 shows the output of the system to one cycle of 1.75 MHz 

frequency input at 2.3 volts peak-to-peak. The arrival times of peaks 
of individual cycles were predicted to within f 25 nsec. The shapes 

of the measured and predicted outputs agreed well, but the amplitude 

of the predicted output was larger than the measured output. As 

shown in Fig. 10, the predicted and measured peak-to-peak output 

amplitudes were 8.7 and 7.2 volts, respectively. It was observed that 

the predicted output was larger than the measured output when the 

input and output exceeded 1.4 and 5.1 volts peak-to-peak, respectively. 

This is an effect on nonlinearity and indicates that the linear model 

used in the prediction becomes inadequate for large amplitude inputs 

and outputs. When the input and output were less than 1.4 and 5.1 

volts peak-to-peak, respectively, the measured output peak amplitudes 

were correctly predicted to within a maximum error of 6 percent. 

Restrictions on both input and outputamplitudes are imposed because 

the nonlinearity may be due to the input and/or the output. 
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CONCLUSIONS 

The SWF ultrasonic test system input-output characteristics were 

investigated by directly coupling the transmitting and receiving trans- 

ducers face-to-face without a test specimen. Some of the fundamentals 

of digital signal processing were summarized. Input and output signals 

were digitized using a digital oscilloscope, and the digitized data 

were processed in a microcomputer using digital signal processing 

techniques. 

The continuous-time test system was modeled as a discrete-time 

linear shift-invariant system. In estimating the unit-sample response 

and frequency response of the discrete-time system, it was found 

necessary to use digital filtering to remove low amplitude noise which 

interfered with deconvolution calculations. A digital bandpass 

filter constructed with the assistance of a Blackman window and a 

rectangular time window were used. Approximations of the impulse 

response and the frequency response of the continuous-time test system 

were obtained by linearly interpolating the defining points of the 

unit-sample response and the frequency response of the discrete-time 

system. It was found that the test system behaved as a linear-phase 

bandpass filter in the frequency range of 0.6 MHz to 2.3 MHz. 

These frequencies were selected in accordance with the criterion that 

they were 6 dB below the maximum peak of the amplitude of the 

frequency response. 

Furthermore, using the unit-sample response and the frequency 

response of the discrete-time system and the linear shift-invariant 

system assumption, the output of the system to various inputs was 

predicted and the results were compared with the corresponding 

measurements on the system. The predicted output was obtained by 

linearly interpolating the defining points of the discrete-time 

output sequence. Tone bursts of various center frequencies and 

durations, rectangular pulses of various durations, and angle cycle 

inputs at 1.75 MHz with various amplitudes were considered. 
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Excellent agreement between the predicted and measured results was 

obtained for tone bursts with center frequencies from 0.5 MHz to 

3 MHz and rectangular pulses. Excellent agreement between the 

predicted and measured results was also obtained for one cycle inputs 

of various amplitudes, as long as the input and output were less than 

5.1 volts peak-to-peak, respectively, at a 40 dB system gain. 

These results are specific for the particular set of components in the 

test system. 

The results of this study will be useful in the quantitative 

analysis of the SWF when test specimens are inserted between the 

transducers. With known test system characteristics, the effects 

on the output signal due to the test specimen having a variety of 

flaw states can be isolated. Furthermore, by using and discussing 

digital signal processing methods extensively, developments in 

CANDE may be facilitated. 
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TABLE 1 Input-Output Properties of Discrete-Time Linear, 
Shift-Invariant and Linear Shift-Invariant Systems 
and Their Corresponding Analogs in Continuous-Time 
systems. 

Discrete-Time 
System 

Linear 

jhift-Invariant 

Linear 
Shift-Invariant 

System Input-Output 
Properties 

If x,(n) + y,(n) 

and x,(n) + y,(n), 

then axl(n) + bx2(n) 

+ ay,(n) + by2(n) 

(Principle of Superposition) 

If x(n) + y(n), 

then x(n - k) + y(n - k) 

If 6(n) + h(n), 

then x(n) + y(n) 

where y(n) = ? x(k)h(n - k) 
k=-co 

(l-l)* 

(Convolution Sum) 

Analog in 
Continuous-Time 

System 

Linear 

Time-Invariant 

Linear 
Time-Invariant 

* 6(n) is called the unit-sample sequence and is given by 

1 , n= 0 
6(n) = (1-2) 

0 , n#O 

and h(n) is called the unit-sample response. 
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TABLE 2 Fourier Representations of Continuous-Time Signals 
and of Sequences. 

Fourier Representation 

Fourier transform of 
continuous-time 
signal x,(t) 

Fourier transform of 
sequence x(n) into 
the continuous 
function x(&J> 

Discrete Fourier 
series of periodic 
sequence G(n) of 
period N 

Discrete Fourier 
transform (DFT) 
of finite-length 
sequence x(n) of 
length N into the 
sequence X(k) of 
length N 

Synthesis Equation 

I 

m 

x,(t) = & Xa(ji2)e jntdQ 

-50 
(2-la) 

x(n) = $ I 
iT . . 

X(eJW)eJwndw 

-77 (2-2a) 

N-l 
G(n) = $ 1 zcklejk(2n/N)n 

k=O 
(2-3a) 

N-l 
x(n) = 5 1 X(k)e 

jk(2r/N)n 
, 

k=O 

for 0 (n IN-l; 

x(n) = 0 , otherwise. 

(2-4a) 

Analysis Equation 
---I-.-----~-~y-- 

(0 
Xa(jn> = x,(t)e-jRtdt 

-cm 
(2-lb) 

m x(eJW> = 1 x(n)e'jwn 
n=-m 

(Z-2b) 
---- - ---__ ----__-____-_ 

ii(k) = yii ;(n)e-jk(2T/N)n 

(2-3b) 

N-l 
X(k) = 1 x(n)e-jk(2r'N 

n=O 

>n 

’ , 

for 0 5 k < N-l; - 

X(k) = 0 , otherwise. 

(2-4b) i 
, 
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TABLE 3 Conditions for the Special Case Where There is 
Exact Correspondence (to within a Scaling Factor) 
of Fourier Transform of a Continuous-Time Signal 
and DFT of a Sequence Derived from Sampling [lo]. 

- ----_ 
Conditions 

(1) The continuous-time signal x,(t) must be periodic. 

(2) The frequency content of x,(t) must be bandlimited. 

(3) The sampling frequency must be greater than twice 
the largest frequency component of x,(t). 

(4) The sampling length must truncate x,(t) with a 

truncation interval exactly equal to one period 
(or integer multiple of one period) of xa(t). 
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-TABLE 4- Convolution Representations of Continuous-Time Signals 
and of Sequences. 

i 
I 
i- 

/ 
I- 

Convolution Representation 

Linear convolution of 
continuous-time signals 
xal(t) and xa2(t) 

Periodic convolution of 
periodic sequences 
ii,(n) and Z,(n), each 
of period N 

Circular convolution of 
finite-length sequences 
xl(n) and x2(n), each of 
length N. The sequences 
are represented as 
periods of periodic 
sequences ?$(n) and 
$(n),each of period N. 

Linear convolution via 
circular convolution of 
finite-length sequences 
xl(n) with length Nl 
and x,(n) with length N2. 
The length of each 
sequence is increased to 
Nl+N2-1 by appending 
sufficient number of 
zeroes to each sequence. 
The resulting sequences 

I are represented as 
periods of periodic 
sequences 21(n) and 
22 b-d , each of period 
Nl+N2-1 

Definition 

xa3(t) = xa#)xa2(t-r)dT 

(4-la) 

N-l 
G,(n) = 1 Z,(m>%,(n-m) 

m=O 
(4-2a) 

N-l 
x,(n) = 1 x,(m)G,(n-m) 

m=O 

for O(n(N-1; 

x,(n) = 0 , otherwise. 

(4-3a) 

Nl+N2-2 

x,(n) = 1 
m=O 

i,(m)x,(n-m) 

for 0 5 n ( Nl+N2-2; 

X3 W = Xl(k)X2(W 
, 

for 0 <_ k"_ Nl+N2-2; 

x,(n) = 0 , otherwise. X3(k) = 0 , otherwise. 

(4-4a) (4-4b) 

Fourier Representation 
of Convolution 
-------__.__-~ 

Xa,(jQ> = Xal(jn)Xa2(jQ> 

(4-lb) 

23(k) = itl(k)ii2(k) 

(4-2b) 

X3(k) = ifl(k)ii2(k) 
, 

forO(k<N-1; - 

X3(k) = 0 , otherwise. 

This is same as: 

X3(k) = Xl(k)X2(k) 

(4-3b) 



TABLE 5 Significance of Sampling Parameters for Deriving 
a Sequence from Sampling a Continuous-Time Signal. 

s-2 
-f< f (5-l) 

Sampling Parameter Significance Relationship 

Sampling frequency l/T, To avoid distortion 
where T is sampling period due to aliasing, the 
in set and l/T is frequency sampling frequency 
in Hz. must be larger than 

twice the highest 
frequency component 
contained in the con- 
tinuous-time signal. 

where no/2 is the 
maximum radian 
frequency of the 
continuous-time 
signal. 

Sampling length* NT, To improve DFT fre- 
where N is length of the quency domain 
sequence derived from resolution, the 
sampling and T is sampling length must 
sampling period in sec. be increased. 

Frequency 
resolution (Hz) 

= l/(NT) 

(S-2) 

To avoid distortion 
due to "leakage" 
[23,25] resulting 
from truncating the 
signal, the sampling 
length must be 
sufficient to totally 
contain the signal?* 

NT 2 Time duration 
of signal 

(5-3) 

To utilize the best 
efficiency of FFT 
computation, N should 
be an integer power 
of 2. 

N = 2v (5-4) 
where L, is an integer. 

* If the sequence is to encounter a linear convolution evaluation using 
circular convolution via a FFT algorithm, appended zeroes may be 
required to extend the length of the sequence. 

** If the signal is periodic, the sampling length should be equal to 
the period or an integer multiple of the period. If truncation 
can not be avoided, the truncation effects should be minimized 
by smoothing the signal by proper time windowing [7-lo]. 

31 



30000 
30010 
30020 
30030 
30040 
30050 
30060 
30070 
30080 
30090 
30100 
30110 
30120 
30130 
30140 
30150 
30160 
30170 
30190 
30200 
30210 
30220 
30230 
30240 
30250 
30260 
30270 
30280 
30290 
30300 
30310 
30320 
30330 
30340 
30350 
30360 
30370 
30380 
30390 
30400 
30410 
30420 
30430 
30440 
30450 
30460 
30470 
30480 

TABLE 6 Program Listing for Microcomputer-Based N-Point FFT and 
IFFT Computations in BASIC when N is an Integer Multiple 
of 2. 

rem Subroutine to calculate Fast Fourier Transform (FFT) 
rem or Inverse Fast Fourier Transform (IFFT) 
rem 
rem Data are in fr(rea1) and fi(imaginary) arrays 
rem Calculation is in place,output replaces input 
rem The following parameters must be defined : 
rem nfft% : The number of points (must be power of 2) 
rem itr% : 1 for FFT, -1 for IFFT 
--- 
rem Check if nfft% is integer power of 2 
xnfft=nfft% 
for i%=l to 20 
xnfft=.5*xnfft : if xnfft=l then 30170 
if xnfft>l then 30160 
print If ERROR in subroutine FFT ( nfft% wrong !!! ) 'I : print 
stop 
next i% 
rem Check itr% 
if itr%=l or itr%=-I then 30220 
print I1 ERROR in subroutine FFT ( itr% wrong !!! ) " : print 
stop 
rem Calculate FFT 
mr%=O : nn%=nff t.%-1 
for &=I to nn% 
nl%=nfft% 
nl%=n1%\2 : if mr%+nl%>nn% then 30260 
mr%=(mr% mod nl%)+nl% : if mr%<=m% then 30300 
tr=fr(m%+l) : fr(m%+l)=fr(mr%+l) : fr(mr%+l)=tr 
ti=fi(m%+l) : fi(m%+l)=fi(mr%+l) : fi(mr%+l)=ti 
next m% 
nl%=l 
if nl%>=nfft% then 30440 
istep%=nl%+nl% : el=nl% 
for m%=l to nl% 
arg=3.141593*(itr%*(l-m$))/el : wr=cos(arg) : wi=sin(arg) 
for i%=m% to nfft% step istep% 
j%=i%+nl% 
tr=wr*fr(j%)-wi*fi(j%) : ti=wr*fi(j%)+wi*fr(j%) 
fr(j%)=fr(i%)-tr : fi(j%)=fi(i%)-ti 
fr(i%)=fr(i%)+tr : fi(i%)=fi(i%)+ti 
next i% 
next m% 
nl%=istep% : goto 30320 
if itr$=l then return 
for is=1 to nfft% 
fr(i%)=fr(i%)/nfft% : fi(i%)=fi(i%)/nfft% 
next i% 
return 
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Signal or Sequence Fourier Representation 

(ii 1 

(i 1 

(ii) 

(iii ) 

u Sampled 

hterpreted as T (set) 

ol-hr4 u Sampled 

f 
x(n) 

(a) 

\ I /I\ I /I\ - 
-2r -7r 0 lr 2lr 

-&T %T 
W 

22 

X (ejw) 

7 Interpreted as 1 (set) 
Implied Periodicity 

A5itn) 

lt,. .,lh..,TTi,, = 
NM- . . . . . . . . . 

m 4 l 

t 

\N-I n 

--Ii+ Oz 

c 

Al- 

t 

O\;-N-I k 

DFT X(k) 
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